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The stability of the conduction regime of natural convection of a fluid contained 
in a narrow rotating annulus with a heated inner wall has been investigated 
according to the linear theory. The results include computations for Prandtl 
numbers P = 0,0*72 and 6.7 over a large range of the rotational parameters. For 
low rotation rates the instability sets in as multicellular convection with the cell 
axes horizontal in the absence of rotation but tilting monotonically towards the 
vertical as the rotationrate isincreased. Two other types of instability were found 
at high rotation rates. For large Froude numbers the unstable thermal stratifica- 
tion leads to a BBnard type of convection with vertically oriented rolls. For large 
Taylor numbers, through a mainly hydrodynamic mechanism, a nearly vertically 
oriented cellular structure develops in the flow which is destabilized as a result 
of rotation. 

1. Introduction 
The present work, dealing with the effect of rotationon the stability of natural 

convection in a fluid contained in an annular region, is an extension of previous 
studies of natural convection in vertical and inclined rectangular enclosures. In  
fact, when the annulus is made narrow by taking it to be infinitely tall and of 
small enough gap width in relation to its mean radius so that the effects of curva- 
ture can be neglected, then the convection in vertical and inclined rectangular 
enclosures become special cases of the analysis reported here. 

Besides the question to be answered in a technical application of whether 
increased heat transfer is obtained by virtue of the basic flow becoming unstable 
when the annulus is subjected to rotation, the problem being considered may also 
have some meteorological interest as one limiting case of the flow in a rotating 
annulus of finite height. The latter problem has received much attention as a 
model of the earth’s atmosphere. The stability aspects of this meteorological 
problem, however, are beyond the scope of this investigation and are not explored 
here. A summary of the relevant studies may be found in the monograph by 
Greenspan (1968). 

By taking the annulus as a narrow one we limit our discussion to that regime of 
2 5  F L J I  7.5 
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the flow in which the transfer of heat takes place entirely by conduction. In  this 
case, in the absence of rotation, the temperature distribution is known to be 
linear and the velocity profile a cubic function of the co-ordinate perpendicular 
to the side walls with the fluid flowing up near the hot wall and down next to the 
cold one. The first two studies in which this, the simplest solution of the equations 
of motion in this physical situation, has been mentioned are those of Batchelor 
(1954), who was interested in the heat transfer in tall but finite rectangular 
enclosures, and Gershuni (1953), who considered the stability of this flow. 
Batchelor also gave a criterion for how large the aspect ratio, defined here as the 
height-to-width ratio of the enclosure, should be in order to have the flow in the 
conduction regime. This has been later modified by Gill & Davey (1969), who 
estimated that the conduction regime will prevail whenever the aspect ratio 
F, > &R, where R is the Rayleigh number. Below this value the flow is in the 
convection regime, which is characterized by an inviscid core with boundary 
layers on the vertical side walls. 

Introduction of rotation with the flow in the convection regime brings in new 
phenomena. In  the interior a circumferential velocity, known in meteorology by 
the name ‘thermal wind’, develops which varies linearly with the vertical 
co-ordinate, as does the temperature. It is the stability of this base flow and the 
ensuing motion which has been of interest to meteorologists because the wave 
pattern which develops as a result of the instability resembles the atmospheric 
jet stream. Prompted by the experimental observations of Fultz (1951,1953) and 
Hide (1953, 1958), it  has been studied theoretically by Davies (1956, 1959), Kuo 
(1954,1956,1957), Brindley (1960) and Lorenz (1962). While in these studies only 
the flow in the inviscid core has been taken into account, Barcilon (1964) and 
O’Neil (1969) have investigated the effect of the Ekman layers on the stability. 
A yet more realistic model in so far as the simulation of laboratory flows is con- 
cerned would also include the vertical boundary layers on the side walls. 

In  the limit of a very narrow annulus the flow becomes dominated by viscosity. 
In  the absence of an imposed vertical temperature gradient the vertical stratifica- 
tion of temperature disappears as the conduction regime is approached. The 
circumferential motions thus also vanish and only vertical flow, which is identical 
to the motion in the absence of rotation, remains, except of course near the top 
and the bottom parts of the annular region. 

The studies of the stability of this flow pattern in the absence of rotation were 
initiated, as has been mentioned, by Gershuni (1953) and his co-workers Birikh 
et al. (1965, 1973), Birikh (1967) and Rudakov (1967a, b) .  Further studies were 
undertaken by Vest & Arpaci (1969), Gill & Davey (1969), Gill & Kirkham (1970) 
and by Korpela, Gozum & Baxi (1973). Some of the asymptotic properties of the 
solutions have been investigated by Gotoh & Satoh (1966) and Gotoh & Ikeda 
(1971 a, b, 1972). As a result of these investigations, the criteria for the onset of 
instability and the ensuing flow patterns are now well determined. 

While the correspondence between a rotating annulus and a vertical enclosure 
is obtained by neglecting entirely the parameters describing the rotation, for the 
flow in the inclined case only the effect of the Coriolis force is neglected. The 
gravitational and the centrifugal forces in the rotating flow correspond to the 
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FIGURE 1. A section through a narrow rotating annulus. 

two components of the gravitational force in the inclined case. Gershuni (1955) 
was also the first to attempt a stability analysis of this problem. Later, in the 
paper by Gershuni & Zhukhovitskii (1969) the analysis was refined and the insta- 
bility was shown to lead to a horizontal cell structure for small angles of inclina- 
tion and longitudinal cells for angles closer to the horizontal. The physical 
mechanism for the instability was discussed later by Hart (1971) in terms of the 
energy flow in the system. The effect of Prandtl number on the stability was 
given recently by Korpela (1974). 

Another interesting situation arises if the gravity force is neglected while the 
annulus is allowed to rotate. This case has been discussed by Chandrasekhar 
(1954) and will be shown in the present Cartesian case to lead to the Rayleigh- 
B6nard problem. The unstable stratification of temperature in the radial direction 
is also present in the more general case considered here. Its influence as well as the 
influence of the Coriolis forces on the stability of the vertical base flow are the 
main objectives of this study. 

2. Formulation and solution 
An annulus as shown in figure 1 with its dimensions such that H / L  >> 1 and 

D/L  9 1 is considered. With the curvature neglected a Cartesian co-ordinate 
system is used. This co-ordinate system is fixed at the midplane of the annular 
gap in such a way that the z co-ordinate is aligned with the axis of the annulus, 
which is also the axis of rotation, and the co-ordinate system rotates with the 
angular velocity Q. The + x direction is the same as that of the rotation vector, 

25-2 



388 S. A .  Korpela and V .  S. A r p c i  

this being the direction opposite to gravity g. The inner and outer walls, at 

having a temperature T2 which is higher than the inner-wall temperature Tl. The 
temperature level is assumed low enough so that the fluid motion is not influenced 
by thermal radiation. Alternatively, taking the fluid as a transparent one even 
if the temperature level were high uncouples the fluid motion from the radiation 
field. The temperature difference AT = Tz - Tl is also assumed small to allow the 
Boussinesq approximation to be used. The kinematic viscosity v and the thermal 
diffusivity K can accordingIy be taken as constants and the viscous dissipation 
and work of compression can be neglected. 

Noting that in the case of an infinitely tall annulus the effect of rotation on the 
base flow is limited to an altered pressure distribution, the base flow velocity and 
temperature distributions are the same as those in the non-rotating case. These 
were given by Batchelor (1954) as 

x = -1L a nd x = +&L respectively, are taken as isothermal, the outer wall 

where W is the z component of the velocity, U = gyATL2/v and 8 = T - T,, 
T, being the average temperature between the walls. Choosing U ,  AT and L as 
the characteristic velocity, temperature and length respectively, and introducing 
L2/v as the scale for time and p U 2  for pressure, where p is the density, the dimen- 
sionless forms of the equations governing the fluid motions become 

v.v = 0, (2) 

(4) 

I n  these equations V is the non-dimensional velocity andp the non-dimensional 
pressure measured above the hydrostatic value. The parameters appearing in the 
equations are defined as G = UL/v ,  the Grashof number, T = 2QL2/v, the Taylor 
number, P = Y / K ,  the Prandtl number, and P = Q2D/2g, the Froude number. As 
usual, the Taylor number measures the importance of the Coriolis forces and the 
Froude number the effect of the centrifugal body force, which is taken as constant 
across the gap, consistent with the approximation LID << 1. 

The stability of the base flow to disturbances of infinitesimal size is obtained 
through the study of the equations governing the evolution of these disturbances. 
These are the linearized forms of (2)-(4), 

c+ GW(k .V) V’+ G- (f .Vr)  &+ T ( k  x V’) = - GVp’- (BY-- &)Of  +V2V‘, ( 6 )  

aV/a t+G(V.V)V+T(&xV) = -Gvp-(Pf -&)e+V2v,  (3) 
aep t  + G(V . v) e = p-ve .  

0 . V ’  = 0, (5) 
dw 

at ax 

ae’ d8 1 - + GW(k . V) 0’ + G - (f . V’) = - V20’, 
at dx P (7) 

subject to the boundary conditions 

v’ = 8’ = o at = ?&, (8) 

where a bar denotes a base flow quantity and a prime a perturbation quantity. 
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q'(x, y, z, t )  = q(x, t )  exp [ik(y sin q5 + z cos q5)] (9) 

and eliminating the pressure allows (5)-(8) to be written as 

a[(D2 - k2)  u]/at + ik cos q5{G[G(D2 - k2)  - D2@] u} 

alJat + ik cos q5(G@g) + i k  sin q5(GDWu) - ik cos q5(Tu) 
+ikcos$(T<) = Fk20-ikcos$(D8)+(D2- k2)'U, (10) 

(11) 

(12) 

u = D u = < = B = O  at x = + Q ,  (13) 

where D = a/ax, and u = 2 .  V and y = 1. (V x V) are the x components of the 
velocity and vorticity respectively. 

This form of the stability equations is the most convenient for the study of 
three-dimensional disturbances. Although it is useful at this point to look for 
simplifications of the equations in the form of the limiting two-dimensional 
problems, it is clear that, in the absence of a transformation reducing the problem 
to an equivalent two-dimensional one, the complete solution must include the 
treatment of three-dimensional disturbances. In  addition, on physical grounds 
there is no reason to expect the problem to be a two-dimensional one owing 
mainly to the presence of the Coriolis term. For the two limiting two-dimensional 
cases no substantial simplifications occur when the disturbances are axisym- 
metric (independent of the y co-ordinate). On the other hand, when the disturb- 
ances are independent of the vertical direction, the equations simplify sufficiently 
to warrant a separate mention. 

= ik0 sin q5 + ( D2 - ha) c, 
aO/at + i k  cos Q(GG0) + GD8u = P-I(D2 - k2)  0,  

Letting q5 = &I- in (10)-(13) reduces them to 

a[(D2-k2)u]/at = 7 c w e + ( o 2 - - 2 ) 2 U ,  (14) 
agat  + i k ~ ~ ~ u  = ik8 + (02 - k2) y, (15) 

a q a t  + G D B ~  = p-y 02 - k2) 0, (16) 

u = D u = < = 8 = 0  a t  x = + t .  (17) 

The great simplification in these equations is due to the decoupling of the vorticity 
equation (15). The remaining equations are then recognized to be the same as 
those governing the stability of Rayleigh-B6nard convection, the solution of 
which can be found in Chandrasekhar (1961, p. 43). 

Although the general problem (lo)-( 13) for three-dimensional disturbances is 
not self-adjoint, i t  can, following Roberts (1960), be given a variational basis in 
terms of its adjoint problem. The eigenvalue problem posed by the variational 
formulation could then be solved. If the same set of trial functions is used for the 
original and the adjoint problem the variational method yields the Galerkin 
equations. These equations can of course also be readily obtained from the 
original differential equations. In  either case, the Galerkin equations, which in 
turn constitute an algebraic eigenvalue problem, are solvable by numerical 
methods. 
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Other similar methods could also be used. One of these, for example, has been 
extensively employed by Chandrasekhar (1961, p. 300). However, a recent study 
by Goziim & Arpaci (1974) of the stability of viscoelastic fluids in a vertical slot 
implies that this approach is not likely to be advantageous for the present 
problem. The reason for this is that this approach suggests here the use of an 
expansion for temperature and the evaluation of velocity in terms of this tem- 
perature; and since for P-tO the stability in this case is known to be entirely 
hydrodynamic in nature and thus independent of temperature perturbations, 
difficulties in convergence at small P can be expected. 

In  the Galerkin method which was adopted the orthogonal series for the 
velocity was constructed from the C and S functions tabulated by Harris & Reid 
(1958) while trigonometric functions were used for the vorticity and the tempera- 
ture perturbations. The expansions can be written as 

m 

n = l  
m 

n=l  

N X ,  t )  = x C(hnx) +ib,(t) S(P,X), (18) 

[(x, t )  = x d,(t) sin K,X+ ie,(t) C O S P ~ X ,  (19) 

O(x,t) = fn( t )cosPnX+ign(t)s inK,X,  (20) 
W 

n=l 

where K, = 2nn and pn = (2n - 1) n. More complex expansions have already been 
used by Rudakov (1967a), and even more complicated ones by Dolph & Lewis 
(1968) with no apparent advantage. However, an article by Orszag (1971) on the 
Orr-Sommerfeld equation points to possible merits of using Chebyshev poly- 
nomials for considerably improved convergence. Further tests on the use of 
polynomial expansions for stability analyses appear to be needed. 

While the coefficients in (19) and (20) are in general complex, for the case when 
the instability sets in as steady convection, which includes all our calculated 
results, writing the expansions in this form ensures that the coefficients are real. 
Substituting next the expressions (18)-(20) into (lo)-( 12) and orthogonalizing 
results in the matrix equation 

AdXldt + BX = 0, (21) 

where X is the vector of coefficients and A and B are matrices containing only 
real elements. The order of the matrices is 6 N  when the expansions (18)-(20) are 
truncated to N terms. 

The general matrix eigenvalue problem (21) was solved by the QZ algorithm 
of Moler & Stewart (1971). The algorithm is a generalization of the QR procedure 
described, for example, in Wilkinson (1965) and reduces to it when A is the 
identity matrix. As was mentioned above, this computation was made only 
infrequently since steady convection was always the outcome of the instability, 
and it was thus sufficient to find the conditions under which the determinant of 
the matrix B vanishes to establish the state of stability of the flow. This was 
accomplished by using the LU decomposition on the matrix B (see Forsythe & 
Moler 1967, p. 68) and finding the determinant as the product of the diagonal 
terms in the matrix U with an appropriate algebraic sign included. 
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Number 
of waves 

m 

1 
2 
3 
4 
5 
6 

7 = OtlQ 
I 

A 
3 

0.2 0.3 0-4 0.5 0*5t 
3 697 - - 12 054 12 327 
2 032 2 130 - 3 673 3 777 
2479 1929 1879 2 209 2 278 
3 832 2 423 1800 1819 1864 
- - 2 244 2 002 2 061 

7 This column gives the results from a second-order approximation while the rest of the 
values correspond to a &&order approximation. 

TABLE 1. The critical values for the product RF when gravitational forces 
are negligible 

3. Discussion and results 
Centrifugal instability 

When the centrifugal forces are sufficiently large, the flow becomes unstable to 
disturbances which lead to the formation of cells with their axes oriented in 
a vertical direction. These form as a solution of (14), (16) and (17) with 

RP = 1707.76, k = 3.117, (22) 

marking the onset of instability in accordance with the Rayleigh theory. This 
result can be compared with the calculations of Chandrasekhar (1954), who con- 
sidered a more general problem by including the ratio LID as a parameter. This 
required him to carry out the solution to the problem in cylindrical co-ordinates. 
In  making a comparison with his results we note that, if the definition of Froude 
number were based on the mean radius, the parameter S given by him as 

S = R2yDt AT/[16~vln (D,/D+)] 

could be written as S = 2RF/[(l+7) (l-7)31ny-1J, 

where 7 = DJD, and the subscripts on D refer to the inner and outer cylinders. 
We reproduce his results in table 1 in terms of the product RF. They are limited 
to the first approximation except in the case 7 = 0.5, for which the second 
approximation was carried out. For higher values of 7 the convergence of his 
method deteriorates further, so that no results, probably owing to the lack of 
large computer facilities a t  the time of his writing, were given. Although his 
results tend towards the value given by (22), a good comparison cannot be made 
because no data are available for values close to 7 = 1.0. 

Following Barcilon (1964) an approximate relation for the number of waves in 
the limiting solution can be obtained. In  this relation, which is 

m = @(1+7)/(1-7) ,  (23) 

the integer closest to m is associated with the number of waves. The value of k in 
this expression is 3.117. A calculation using this relation shows that the correct 
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number of waves is predicted in each case considered by Chandrasekhar, even 
for 7 = 0.2. This is not really surprising since the selection of the critical wave- 
number appears to be governed basically by the geometry rather than the type of 
instability. (Compare also with Davies 1959.) 

Instability for P --f 0 

When the Prandtl number is set to zero in (12), the temperature perturbations 
vanish completely. The instability becomes now entirely hydrodynamic in 
nature. With the vanishing of the temperature perturbations the dependence on 
the Froude number vanishes also, so that the only parameters which remain are 
G, T ,  k and $. 

The results for T = 0 are given in Korpela et al. (1973), where it was found that 
the instability sets in when G = 7930, k = 2.69 and q5 = 0. While the cellular 
motions which arise here are two-dimensional with their axes horizontal, the 
effect of rotation is expected to lead to a more complicated pattern with a non- 
zero value for $. This is a consequence of the Coriolis forces lying in the plane 
perpendicular to the rotation vector while the two-dimensional motions in the 
absence of rotation lie in a plane containing the axis about which the annulus is 
rotated. 

With the values for T = 0 known, we next consider the case T -+ oc). Here we 
make the assumption, to be justified aposteriori, that, as T -+a, # + &r. Letting 
s = $57 - 4, the governing equations (lo)-( 13) after elimination of 5 become 

( 0 2 -  ( 0 2 -  k2- alatl2.u = - P ~ T ( G D ~ -  ET) u, (24) 

u = Du = (DZ-k2)2u = 0 a t  x = -+$. ( 2 5 )  

From (24) i t  is seen that the Taylor number and the angle e occur only as the 
product sT, so that the number of independent parameters has been reduced by 
one in going to this limit. To obtain the critical value of the Grashof number 
(24) subject to the boundary conditions (25) could now be solved and a search 
made for the minimum value of G as a function of k and eT. We did not carry out 
this calculation separately but obtained the results from the full equations by 
giving the Taylor number a large value, which in the actual computation was 
T = 20 000, and searching the k, e plane for the minimum of G. The value obtained 
in this manner was G = 2867.14 for e = 2.0787 x 10-3 and k = 3.123. Using this 
preliminary result the neutral-stability curves for intermediate Taylor numbers 
were calculated. 

As is well known, the convergence of the Galerkin method deteriorates with 
increasing aG. To establish the proper number of terms in the expansions 
(18)-(20) some trial runs were made. These were performed for the case P = 0, 
# = 0. The results are shown in tables 2 and 3. Since in our calculations the critical 
Grashof number was never greater than about 8000, an eight-term expansion was 
considered sufficient to assure a correct value for the last digit before the decimal 
point. This also allowed a reasonably accurate determination of the wavenumber 
since, as may be seen in tables 2 and 3, a low-order approximation gives a value 
which is too high. 



Natural convection in a narrow rotating annulus 393 

N 
I h > 

k 1 2 3 4 5 

2.2 8 322 10 253 10 974 10 989 10 996 
2.5 7 792 9 865 10 656 10 676 10 686 
2.6 7651 9 793 10 613 10 636 10 647 
2.7 7 526 9 751 10 603 10 630 10 643 
2-8 7415 9 740 10 629 10 661 10 676 
3.0 7 232 9 835 10 808 10 857 10 879 

TABLE 2. The critical Grashof number as a function of the number of terms in the 
expansion N and the wavenumber k for T = 100, P = 0 and 9 = 0 

N 

k 

2.8 
2.9 
3.0 
3.1 
3.2 
3.3 
3.4 
3-6 
3.8 
4.0 

4 

- 
50 755 
50 376 
49 757 
49 647 
49 188 

5 

58 67% 
58 480 
58 352 
58 294 
58 314 
58 618 

6 

59 441 
59 362 
59 380 
59 516 

- 

7 

60 051 
59 973 
59 995 
60 137 
- 

TABLE 3. The critical Grashof number as a function of the number of terms in the 
expansion N and the wavenumber k for T = 1000, P = 0 and 4 = 0 

The results of the computations are shown in figures 2, 3 and 4. I n  figure 2 the 
variation of the criticalGrashofnumber is shown as a function ofthe magnitude lc 
of the wave vector for three Taylor numbers. The angle $ was kept constant on 
these curves at a value close to the critical one. The dependence of the minimum 
value of the Grashof number on lc was found to depend only weakly on the Taylor 
number: the values fell between the limits 2.69 and 3-12, the lower one corre- 
sponding to the case of no rotation and the higher one being approached as the 
Taylor number became large. Figure 3 shows the neutral-stability curves for the 
same Taylor numbers as a function of the angle $. A constant value of k = 2.65 is 
associated with each of the curves. The three-dimensional nature of the problem 
is well exhibited in this figure as the critical point, corresponding to the minimum 
of each curve, shifts towards increasing values of 9, This gives validity to the 
approximations made in deriving (24) and (25). In  physical terms this shift is 
associated with the formation of rolls, as a result of instability, which are oriented 
horizontally in the absence of rotation, tilting to  approximately 45" when T = 50 
and assuming with a further increase in the Taylor number a predominantly 
vertical orientation. 

The set of critical states is summarized in figure 4. The critical Grashof number, 
starting from a value of 7930 in the absence of rotation, diminishes to 2867, which 
is given as an asymptote in the figure for very large values of the Taylor number. 
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FIGURE 2. Variation of the critical Grashof 
number for a fluid with P = 0 as a function 
of the magnitude k of the wavenumber 
vector. 
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FIGURE 4. The states of neutral stability for P = 0. 

Instability for finite P 
For non-zero Prandtl numbers the effect of rotation is manifested in both the 
Froude and the Taylor number. Since for a given fluid the Prandtl number is 
fixed, it would seem best to represent the results in co-ordinates with the Taylor 
and Froude numbers as the abscissae and the Grashof number as the ordinate. 
The Prandtl number would then remain a parameter for the surfaces of neutral 
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FIGURE 6. A sketch of the neutral-stability surface for P = 0.72. 

stability. Such a stability diagram is given in figure 5. However, if, rather than 
the Taylor number, the square of the Taylor number is used as a co-ordinate, an 
increase in the rotation rate, with the other parameters held fixed, corresponds to 
following a ray from the origin on a constant-G plane in a direction which is com- 
patible with the scales of the horizontal axes. Three types of instability were 
found when the parameters of the problem were varied. The lower left-hand 
portion in figure 5 corresponds to centrifugal instability, termed here class I 
instability. In the range of parameters corresponding to the top portion of the 
figure the instability is associated primarily with the vorticity distribution of the 
base flow, and is basically of the type which occurs in the absence of rotation for 
low Prandtl numbers. This is called class I1 instability. Finally, on the right side 
of the figure the Coriolis forces play an important part. This instability is called 
class I11 type. For air (P = 0.72), the surfaces of constant Froude number are 
shown in figure 6. The point of division of the class I and I1 instabilities occurs a t  
F = 0.34 for T = 0, the lower values of P corresponding to class 11. The transition 
point between classes I1 and I11 is seen to occur at about T = 33 for F = 0, this 
point moving to lower Taylor numbers as the Froude number is increased. An 
idea of how this transition occurs for P = 0 is displayed in figure 7, in which the 
Taylor number is a parameter for the curves. The value of ii is held constant a t  
2-30, which is close to the critical wavenumber, for the entire set. Considering the 
curves for T = 35 and 40, it may be noted that basically two minima occur. The 
first, corresponding to class I1 instability, which is quite insensitive to Taylor 
number variation, appears near 4 = 25". The other, associated with class I11 
instability, depends strongly on the Taylor number and occurs in the neighbour- 
hood of 4 = 70". Between these two instabilities there is a stable region which 
extends its peak to very large Grashof numbers. On increasing the Taylor number 
the peak is brought down; indeed for T = 60 it has been brought down sufficiently 
so that one can speak of only one minimum for the curve. 

A spectrum of eigenvalues is shown in figure 8 for a typical case near the nose 
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FIGURE 6. The states of neutral stability for P = 0.72. 
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FIGURE 7. The dependence of the critical Grashof number for a fluid with P = 0.72 on the 
phase angle 9 in the transition region of class I1 and class I11 instabilities. P = 0, k = 2.2. 
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FIGURE 8. The damping rates for a fluid with P = 0.72 under the conditions F = 0, 
T = 35, g5 = 71.5' as a function of Grashof number. 
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FIGURE 9. The states of neutral stability for P = 6.7. 
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of the class I11 instabilities. The damping rates are plotted as a function of 
Grashof number for q5 = 71-5", k = 2-20 and T = 35. By identifying the eigen- 
values by their order at G = 0, we note that the lowest one stays real throughout 
the variation of the Grashof number, becoming positive at point A and, after 
traversing the unstable region, negative again a t  point B. The second and third 
eigenvalues combine into a complex conjugate pair a t  G = 400, the real part of 
which stays in the damped region for all Grashof numbers considered. The fourth 
eigenvalue is associated with class I1 instability and becomes critical at point C 
in figure 7. In  figure 7 it  can also be seen that on decreasing the Taylor number 
there is an increase in the minimum value of G for class 111 instability. This 
tendency causes finally a shift in the instability to the class I1 type, the transition 
point for F = 0 being at T = 33, as has been mentioned. With this transition 
there is a discontinuity in the slope of the critical curve, as well as in the value of 
the angle q5. The critical Ic also changes abruptly, from 2-20 for class I11 instability 
to 2.90 for class I1 instability. What actually happens in a physical situation 
depends on the relative amplification rates of the corresponding disturbances and, 
after the initial growth, on the nonlinear terms of the equations which we neg- 
lected in the present linearized study. For water (P  = 6.7) the situation is similar 
to that for air (P  = 0.72), the only notable difference being that the Froude 
number effect is more pronounced. The shift between class I1 and class I insta- 
bility has already taken place at F = 0.1. The calculations are summarized in 
figure 9. 

Even in as extensive a parametric study as we have attempted to camy out in 
this investigation, some aspects of the problem have still been left untreated. In  
particular, as is the case for a vertical enclosure, for large Prandtl numbers 
instability in the form of travelling waves is expected to take place. Besides this, 
no calculations were performed to establish the contributions of the various terms 
to the energy of the disturbance. An idea how this takes place can be deduced 
from the results of Hart (1971), who studied the flow in an inclined enclosure. In  
particular, since the Coriolis forces cannot do work, their effect is only to alter 
the way in which the transfer of energy from the base flow takes place under the 
action of the Reynolds stresees; and since the effect of the Taylor number is to 
destabilize the flow, this transfer is facilitated by rotating the annulus. 
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